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1.0 Erosion Model Input Distribution Summary 

A summary of parameter values and distributions employed in the erosion modeling component 

of the Clive Depleted Uranium Performance Assessment Model (the Clive DU PA Model) is 

provided in Table 1. Additional information on the derivation and basis for these inputs is 

provided in subsequent sections of this report. 

For distributions, the following notation is used: 

 N( μ, σ, [min, max] ) represents a normal distribution with mean μ and standard deviation 

σ, and optional truncation at the specified minimum and maximum, 

 LN( GM, GSD, [min, max] ) represents a log-normal distribution with geometric mean 

GM and geometric standard deviation GSD, and optional min and max, 

 U( min, max ) represents a uniform distribution with lower bound min and upper bound 

max,  

 Beta( μ, σ, min, max ) represents a generalized beta distribution with mean μ, standard 

deviation σ, minimum min, and maximum max,  

 Gamma( μ, σ ) represents a gamma distribution with mean μ and standard deviation σ, 

and 

 TRI( min, m, max ) represents a triangular distribution with lower bound min, mode m, 

and upper bound max. 

Table 1. Summary of distributions for erosion modeling 

GoldSim Model 
Parameter 

Symbol Units Distribution or Value Notes 

Gully_b_parameter b — normal( µ = -0.4, σ = 0.15, 
min = -0.75, max = -0.05 ) 

See Section 5.3.1 

L_init L0 m uniform( Small, 5 ) See Section 5.2 

AngleOfRepose_Gully αgully deg normal( µ = 38, σ = 5, 
min = Small, max = 90 – Small ) 

Clover, 1998 (for 
gravel); See Section 
5.2 

AngleOfRepose_Fan αfan deg uniform( 5, 10 ) See Section 5.2 

Number_of_Gullies  — Discrete uniform( min=1, 
max=20 ) 

See Section 5.1 and 
Section 5.4 

ConvergenceCriterion  m
3
 0.01 modeling construct 

FractionGully — — A Table of 1000 generated 
values 

See Section 4.2 
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2.0 Introduction 

The safe storage and disposal of depleted uranium (DU) waste is essential for mitigating releases 

of radioactive materials and reducing exposures to humans and the environment. Currently, a 

radioactive waste facility located in Clive, Utah (the “Clive facility”) operated by 

EnergySolutions is being considered to dispose DU waste that has been declared surplus by the 

U.S. Department of Energy (DOE). The Clive facility has been tasked with disposing of the DU 

waste in a manner that protects humans and the environment from future radiological releases. 

To assess whether the proposed Clive facility location and containment technologies are suitable 

for protection of human health, specific performance objectives for land disposal of radioactive 

waste set forth in Utah Administrative Code (UAC) Rule R313-25 License Requirements for 

Land Disposal of Radioactive Waste - General Provisions must be met—specifically R313-25-8 

Technical Analyses. In order to support the required radiological performance assessment (PA), a 

probabilistic computer model has been developed to evaluate the doses to human receptors and 

concentrations in groundwater that would result from the disposal of radioactive waste, and 

conversely to determine how much DU waste can be safely disposed at the Clive facility. The 

GoldSim systems analysis software (GTG, 2010) was used to construct the probabilistic Clive 

DU PA Model. 

The site conditions, chemical and radiological characteristics of the wastes, contaminant 

transport pathways, and potential human receptors and exposure pathways at the Clive facility 

that are used to structure the Model are described in the conceptual site model (CSM) 

documented in the Conceptual Site Model white paper (Clive DU PA CSM.pdf). 

The purpose of this white paper is to address specific details of the erosional processes that may 

affect cover performance. This paper is organized to give a brief overview of erosional 

processes, present the overall modeling approach and assumptions, followed by the presentation 

of the mathematical formulae that are used to represent these processes in the Clive DU PA 

Model. 

Above-ground covers of waste repositories are subject to erosion by the forces of wind and 

water. The proposed waste disposal cell for DU at the Clive facility, which has an engineered 

above-ground cover, is subject to these erosional processes. Both wind and water erosion are 

represented in the Clive DU PA Model. Details of wind erosion modeling and the effects on dose 

to potential receptors are addressed in detail in the Atmospheric Transport Modeling white paper, 

(Atmospheric Modeling.pdf) and are not addressed further in this white paper. Water erosion via 

the return of Lake Bonneville or a small lake is not discussed in this document, but is addressed 

in the Deep Time Assessment (Deep Time Assessment.pdf). Other water erosional processes are 

described below. 

There are two types of water erosion in the CSM: sheet erosion and gully erosion (channel 

formation). Two approaches have been used in the Clive DU PA Model to evaluate the influence 

of erosion on embankment performance. The first uses results from a landscape evolution model 

of a borrow pit area at the Clive site as an analog for embankment cover erosion and the second 

applies a gully model in a screening approach to evaluate the effects of the occurrence of gullies. 

Only the first approach (borrow pit model analog) is currently implemented in the Model, 
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although the second approach (gully screening model, used in the Clive DU PA Model v1.0) is 

included in the Model as an optional calculation. 

2.1 Sheet Erosion 

Sheet erosion is erosion of soil particles by water flowing overland as a “sheet” in a downslope 

direction. During extremely high rainfall events when rain falls faster than water can infiltrate, 

runoff can occur, acting as a mechanism for removing/eroding cover materials. Sheet erosion is a 

uniform process over the area of the cover and depends largely on the magnitude and shape of 

the slope, soil texture, and cover characteristics, as well as rainfall intensity. This is different 

from erosion that flows in defined channels (i.e., gully erosion), which is discussed in Section 

2.2.  

In the top slope of the embankment, where slopes are gradual (about 2% slope), sheet erosion 

will be slower than on the steeper side slopes of the cell (about 20% slope) (Embankment 

Modeling white paper). As soil and loess move down slope by sheet erosion, it is likely that their 

volumes would be replenished by deposition of clean loess from the surrounding environs (i.e., a 

net balance of zero change). In the end, the total soil volume on the embankment would not 

change, though there would be a slow movement of soils down slope, along with the 

contaminants they could potentially contain. While both sheet and gully erosion are considered 

in the Clive DU PA Model (v1.2) little contamination is likely to be transported by sheet erosion, 

and gully erosion is expected to be far more significant. Sheet erosion likely would have little 

effect, except possibly to move a small amount of potentially contaminated soil down slope.  

2.2 Gully Erosion 

Gully erosion is a process that occurs when water flows in narrow channels, particularly during 

heavy rainfall events. Gully erosion typically results in a gully that has an approximate “V” cross 

section that widens (lateral growth) and deepens (vertical growth) through time until the gully 

stabilizes. The formation of gullies is a concern on uranium mill tailings sites and other long-

term above-ground radioactive waste sites (NRC 2010). Gully erosion has the potential to move 

substantial quantities of both cover materials and waste, should the waste material be buried 

close to the surface. It occurs when surface water runoff becomes channeled and repeatedly 

removes soil along drainage lines, creating a depositional fan of the removed materials. 

 

There are two important features of the gully that need to be considered when modeling gully 

erosion: the thalweg and the angle of repose. The thalweg is a line that joins the lowest points of 

the gully along the entire length of the gully, defining the gully’s deepest channel. It can 

conceptually be thought of as the bottom of the gully that runs along a downward slope. The 

angle of repose is the angle the side of the gully makes with the horizontal; it is a property of the 

material that is eroding.  

 

The engineered cover at the Clive facility may be subject to gully erosion via a disturbance 

attributed to an animal burrow, large animal tracks, the root of a fallen tree or shrub (root throw), 

or off-highway vehicle (OHV) track. It is assumed that a notch or nick will be created from these 

activities at some location on the surface of the cover and the feedback processes inherent in 

gully formation will cause erosion downward to the surrounding grade and erosion upward 
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toward the top slope of the embankment. As water flows across the inner walls of the notch, 

erodible solid materials will be transported with it, creating a larger notch (both vertically and 

laterally) and thus a greater capacity to remove solid material. As this process continues, more 

material will erode down-gradient from the notch, as well as up-gradient from the notch. Also, as 

water flows down the thalweg it can undercut the gully banks, causing materials to slump into 

the thalweg, where they get washed along the downward slope until the angle of repose is 

reached. A wedge-shaped volume of material is removed and deposited on the neighboring flat 

as a sort of small alluvial fan, forming its own angle of repose. This process continues until the 

mouth of the gully has met the top of the removed material. Gully erosion was evaluated as 

having the potential to occur at the Clive facility and is included using two approaches 

(described above) for the Clive DU PA Model.  

 

In the GoldSim implementation of gully erosion, a gully is assumed to form (via rainfall, 

etc.) after the initiating event of an OHV disturbing the rip-rap outer cover material; i.e., 

the OHVs are only initiating the gullies. The gullies that are modeled are deeply-incised 

to the extent that they reach the waste layers with side walls at the angle of repose and a 

wedge shape with a narrow top and broader base where the gully meets the level grade 

surrounding the disposal cell. The steep-walled profile of the eventual deeply-incised and 

narrow gullies would likely preclude extensive OHV activity in the gullies themselves; 

i.e., once a gully forms, OHV users (if any) would likely ride elsewhere on the cover. 

Thus, the use of area-average embankment air and soil concentrations in the Dose 

Container for OHV user exposure across the entire disposal unit, including gullies, is 

appropriate and likely to be protective. 

3.0 Evapotranspiration Cover Design 

The composition of the embankment cover is an important factor in determining its erodibility. 

At the Clive facility, the cover for the portion of the Federal Cell housing DU (the Federal DU 

Cell) is an evapotranspiration (ET) cover composed of a 6-in. thick Surface Layer of native 

vegetated Unit 4 material with 15 percent gravel mixture on the top slope and 50 percent gravel 

mixture for the side slope. The functions of this layer are to control runoff, minimize erosion, 

and maximize water loss from ET. This layer of silty clay provides storage for water 

accumulating from precipitation events, enhances losses due to evaporation, and provides a 

rooting zone for plants that will further decrease the water available for downward movement. 

Underlying the surface layer is the Evaporative Zone Layer. This layer is also composed of 

Unit 4 material and is 12 in. thick. The purpose of this layer to provide additional storage for 

precipitation and additional depth for plant rooting zone to maximize ET. The Frost Protection 

Layer is below the Evaporative Zone Layer, and is 18 in. thick. The purpose of this layer is to 

protect layers below from freeze/thaw cycles, wetting/drying cycles, and inhibit plant, animal, or 

human intrusion.  

For further details on the Federal DU Cell, refer to the Embankment Modeling white paper, and 

for details on ET cover modeling, refer to the Unsaturated Zone Modeling white paper. 
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4.0 Borrow Pit Model Analog 

4.1 Simulation of Sheet and Channel Erosion 

Landscape evolution models were developed and applied for a face of a borrow pit at the Clive 

Site in order to predict the response of the pit face and upslope land surface to water erosion 

processes during runoff events. The models provide a quantitative description of the evolution of 

slopes and channels (also called gullies in this white paper) over time. The objective of the 

models was to provide a realistic estimate of the rate of progression of hillslope erosion loss and 

channel development towards the existing embankments that encase waste. The landscape 

evolution model SIBERIA (Willgoose, 2005) was selected for this analysis. Landscape evolution 

models such as SIBERIA capture the interaction between the runoff response and the elevation 

changes of the landform surface over long time periods. This capability makes models such as 

SIBERIA particularly well-suited for waste site modeling. The model domain for the borrow pit 

included the borrow pit floor, a 3-m (10-ft) high pit face at a 1:1 slope and several hundred 

meters of ground surface upslope from the pit face at a slope of 0.3 percent. The soil was 

characterized with properties consistent with the Unit 4 silty clay, and had no vegetation or rock 

cover. While composed of similar soil the surface layer of the top slope of the ET cover proposed 

for the Federal DU Cell has a slope of 2 percent, a gravel composition of 15 percent, and will be 

re-vegetated with a mix of native and non-native species. While the cover top slope has a larger 

slope of 2 percent as compared with the slope of 0.3 percent for the undisturbed area upslope 

from the borrow pit face, the top slope characteristics included vegetation and gravel admix that 

would act to slow erosion and channel formation. Changes in elevation at each node were 

obtained at 100 y, 500 y, and 1000 y. Simulations were done for two rainfall intensities. 

Assumptions for this approach include: 

 The geometry of the borrow pit wall and upslope area are sufficiently similar to that of 

the embankment top slope and side slope that the borrow pit serves as an analog. 

 The borrow pit materials (Unit 4) are sufficiently similar to the layers of the embankment 

(Unit 4 with gravel, Unit 4, and radon barrier clays). 

 Surface elevation changes at 10,000 y can be extrapolated from SIBERIA model results 

from 100 y, 500 y and 1000 y.  

 The results at 10,000 y approximate steady state of gullies. This steady state assumption 

is implemented from time zero in this model. 

 The area of waste that is deposited on the fan is the same as the area of waste exposed in 

the gullies, using projections onto the horizontal plane. 

 The excavation of ET Cover cells was not considered in the calculations below for 

contaminants in the excavated mass from the gully because it was assumed that 

significantly more contaminant mass was in the waste than in the cover and that the 

material extracted from the waste layers would be on the top of the fan. 

 

A subset of the borrow pit model domain was selected to represent the cover. The area extended 

from 50 m downslope from the edge of the embankment to 10 m upslope from the borrow pit 

face. The model domain was represented by a grid with nodes at equal 0.75-m spacings. Changes 

in elevation at each node were obtained at 100 y, 500 y, and 1000 y. Simulations were done for 
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two rainfall intensities. Since only small differences in elevation change were seen between the 

two rainfall intensities, results for both intensities were combined to provide two estimates of 

elevation change at each of the three times. The 0.1
th

, 10
th

, 20
th

, and 90
th

 percentiles of the 

simulated data were calculated at each of the three times. These percentile plots in most cases 

showed a non-linear relationship between the percentile depth of the area and time.  

A square-root function was fit to the 0.1
th

, 10
th

, 20
th

, and 90
th

 percentiles using the general form: 

                  

where 

f(t)  = percentile depth of the area, 

A  = amplitude parameter, and  

t  = time. 

 

The error term was assumed to follow a normal distribution. The nls() function in the ‘stats’ 

package of the software program R was used to estimate the A parameter and the error term. The 

four percentile plots used for the fit are shown in Figure 1.  

After the percentile curves were fit using the square root function, parameters were randomly 

drawn from the A distributions for three of the curves, and values of the function at 10,000 y 

were calculated. For each of the 1,000 iterations, a lognormal distribution was estimated from the 

resulting percentiles. The proportion of the lognormal distribution that fell within each specified 

depth profile was calculated through simulation. An example iteration is included below for 

demonstration purposes: 

1. Simulate ‘A’ values for the 10
th

, 20
th

, and 90
th

 percentile regression fits. The fits for the 

0.1
th

 percentile were not used for stability reasons. These values might be 1.59, 0.670, 

and -0.228 respectively. 

2. Project the depth value for each of the curves at 10,000 years. For the ‘A’ parameters 

above, these would be 159 mm, 67.0 mm, and -22.8 mm respectively.  

3. Fit a lognormal distribution to these projected depth fits. This step involves finding the 

best geometric mean, geometric standard deviation, and shift parameter (lower bound) for 

the percentiles above. Because the 10
th

 percentile of the data is really the 90
th

 percentile 

of ‘depth’, the percentiles used for fitting are subtracted from 1. So for fitting purposes, 

the 10
th

 percentile of the data is the 90
th

 percentile of the fitted distribution (and so on).  

4. The parameters of the lognormal distribution with the best fit are: μ = 3.22, σ = 1.56, 

θ = -26.2. One thousand values from this lognormal distribution are simulated, and the 

proportion that fall within each depth range are calculated, and saved to a matrix. As a 

point of reference, the theoretical 10
th

/80
th

/90
th

 percentiles of this distribution are -22.77, 

67.03, and 158.8 respectively. So the lognormal distribution fits very well to these three 

percentiles (see step 2). 

5. The matrix of the 1,000 iterations is output to a .csv file and converted to an MS Excel 

file. 
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Figure 1. Percentile depth of the area with time and fitted functions. 

 

The first five realizations of fraction of cover area for each elevation change (depth) interval are 

shown in Figure 2. The original output file included 0.5-m depth increments from the beginning 

of the waste (1.5 m) up to 10 m. It was clear that there are virtually no gullies greater than 3.5 m, 

so the depth ranges were cut off there, re-normalized the proportions, and the 3.5-m to 10-m 

depth ranges were deleted. 

The model documentation report and a model package containing the EAMS and SIBERIA 

software, model input files, grids, and results are provided in an attached electronic addendum.   
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Figure 2. The first five realizations of fraction of cover area for each elevation change 

(depth) interval.  

4.2 Implementation in the Clive DU PA Model 

In the Clive DU PA Model, the area of the waste exposed by the gullies and the volume of the 

waste removed by the gullies are used in the dose calculations. The area of waste exposed by 

gullies and the resulting fan of waste from gully excavation of the disposal cell is the exposure 

area for gullies. The volume of the waste removed by gullies is used to calculate a concentration 
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of radionuclides in the waste that was removed. This concentration of waste is assumed to be 

spread out over the exposure area of the gullies and fan and is used for dose calculations. 

The results in the MS Excel file SimulatedErosionDepthProportions.xlsx provide the 

proportion of area of the cover or waste layer that has a gully “end” at the defined cell depths, 

where a gully “end” is defined as a cell for which the gully enters in the top of that SIBERIA cell 

but does not exit out the bottom of the cell. The gully could exit on the side of the cell, but it 

would still be considered to be an “end” of a gully in that cell as can be seen in the example 

illustrations in Figure 3 below.  

The sum of all the proportions of area is the exposure area for the gullies. The exposure area of 

the fan is assumed to be the same as the exposure area of the gullies. This assumption is 

supported by output figures from the SIBERIA model such as the Figure 4 (from the file 

5YR_Rainfall_1000YR_Bare.png.) The fan appears to be similar in size to the area exposed 

by the gully.  

The volume of waste removed by the gully is estimated as the sum of the area above every gully 

“end” (Figure 3). This assumption is conservative but makes the best estimate available given the 

level of spatial discretization of the SIBERIA modeling. The volume removed by the gully from 

each waste layer is multiplied by the concentration of each radionuclide in that waste layer to get 

the mass of radionuclides removed by the gully over time. The activity mass of radionuclides per 

mass of soil removed is used in the dose calculations related to gully formation. Note that gully 

formation in the Clive DU PA Model does not change over time. The gully areas and volumes 

are fixed for a realization. 
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Figure 3. Method for estimating gully volume from SIBERIA elevation change results. 

To clarify the fractions given in the elements FractionWasteCellsGullyEnds and FractionCapCellsGullyEnds, the illustrations 

are provided below. The fraction of the cap or waste cells in which a gully "ends" was extracted from the SIBERIA output.  

These fractions denote the proportion of the area in a Cap Cell or Waste Cell for which a SIBERIA modeling cell had a gully 

enter (from the top) but not exit (from the bottom). The dark gray cells below are the cells that would be counted as having a 

gully end. The light gray cells are removed in addition to the dark gray cells for volume of gully calculations. Note that because 

we are counting discrete cells, the area and volume estimates are conservative.

Fraction of gully illustration

cell layer 1: 0/3 of the cells are counted for the fraction of gully ends;

    1/3 of the cells are removed by gullies for gully volume calculations.

cell layer 2: 0/3 of the cells are counted for the fraction of gully ends;

    1/3 of the cells are removed by gullies for gully volume calculations.

cell layer 3: 1/3 of the cells are counted for the fraction of gully ends;

    1/3 of the cells are removed by gullies for gully volume calculations.

Example 1.

Example 2.

Gully cross-section with grids denoting cells and cell layers in Siberia. The gullies are roughly drawn in as "V"s.  The fraction of 

cells in which the gully "ends", is represented by the dark gray cells. The area of waste exposed by the gullies is that fraction 

times the surface area of that layer. The volume of waste removed by the gully is the sum of all the cells for which the gully ends 

(dark gray cells), plus the sum of the cells directly above, represented by light gray cells.

cell layer 1: 2/3 of the cells are counted for the fraction of gully ends;

    3/3 of the cells are removed by gullies for gully volume calculations.

cell layer 2: 0/3 of the cells are counted for the fraction of gully ends;

    1/3 of the cells are removed by gullies for gully volume calculations.

cell layer 3: 1/3 of the cells are counted for the fraction of gully ends;

    1/3 of the cells are removed by gullies for gully volume calculations.

The gully now has "ends" in the first layer since the gully in those cells does not go through to the layer beneath. Thus the fraction of 

cells in which the gully ends is greater than in Example 1. The volume of the waste removed by the gully similarly increases.

This wider gully now has "ends" in the second layer since the gully in those cells does not go through to the layer beneath. Thus the 

fraction of cells in which the gully ends is greater than in Example 1 or 2. The volume of the waste removed by the gully increases.

Example 3

cell layer 1: 0/3 of the cells are counted for the fraction of gully ends;

    3/3 of the cells are removed by gullies for gully volume calculations.

cell layer 2: 2/3 of the cells are counted for the fraction of gully ends;

    3/3 of the cells are removed by gullies for gully volume calculations.

cell layer 3: 1/3 of the cells are counted for the fraction of gully ends;

    1/3 of the cells are removed by gullies for gully volume calculations.
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Figure 4. Visualization of SIBERIA model simulation of elevation change for bare soil case 

for the borrow pit at 1000 years.  

Vertical exaggeration is 18× making the pit face appear nearly vertical. 

 

5.0 Screening Gully Model 

5.1 Screening Gully Model Assumptions 

In the development of the erosion modeling approach, Dr. Garry Willgoose, a geomorphologist 

with expertise in gully formation at The University of Newcastle, Australia, was consulted for 

advice relating to the modeling of gully formation at the Clive Site. Dr Willgoose is author of the 

erosion model SIBERIA (Willgoose, 2005) and has experience with gully formation on uranium 

mill tailings (Willgoose, 2010; Willgoose and Shermeen, 2006). The purpose of the initial gully 

model in the Clive DU PA Model is to determine whether gullies and fans are significant 

contributors to dose and whether a more sophisticated erosion model is needed. A simple 

screening-type gully model was developed with the advice of Dr. Willgoose. To that end, several 

simplifying assumptions are made: 
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 Gullies are assumed to form instantaneously, from the time of loss of institutional 

control. They do not evolve over time. To provide some understanding of what could 

happen if gullies were allowed to form at different times, concentrations in the gully 

material that is moved to the fan changes over time, as if the gully were formed 

instantaneously at any moment in time. These concentrations are used in the dose 

assessment. This is the only way that the effects of time are considered in the gully 

model. 

 Gully formation occurs independently of main model processes. For example, processes 

such as biotic intrusion do not occur in gullies, nor does particle resuspension via wind 

erosion occur from the gully. In addition, the embankment remains intact – top and side 

slopes of the waste cell do not change in area or geometry with the formation of gullies. 

 A small number of gullies is allowed to form in order to evaluate the effects of more than 

one gully on dose and on model sensitivity. The distribution for the number of gullies 

allowed is a discrete uniform distribution from 1 to 20. Each gully has the same geometry 

for any given model realization. 

 Types of gully-initiating events are not modeled. Conceptually, these could be either 

natural (e.g., animal burrows or root throw) or anthropogenic (e.g., OHV track). It is 

simply assumed that some triggering event occurs. 

 The parameters for angles of repose, which in part dictate the geometry of the gullies, are 

based on the assumption of a homogenous cover material.  

 The cross section of a gully is an inverted isosceles triangle, with the bottom vertex of the 

triangle following along a curved, downward sloping line that is the bottom of the gully 

(the thalweg). 

 

As shown in Figure 5, gullies that form in the embankment may be of different depths or slightly 

different shapes. Thus, a different amount of material may be removed for different realizations, 

resulting in a different amount of potentially expose waste in different realizations. The first 

picture in Figure 5 shows the intact embankment, with different color shades demonstrating 

different layers of the cover and waste. The second picture in Figure 5 illustrates a shallow gully 

formed so that the gully and fan have equal volumes. It is clear that the height of the fan aligns 

with the mouth of the gully. The third picture in Figure 5 shows another, deeper gully formed. 

These gully depictions show the mouth of the gully and the height of the fan aligning, as well as 

equal volumes of fan and gully. 

Gully geometry parameters are simulated probabilistically and are constant over a realization, 

assuming homogeneous materials. These parameters are then used to calculate the depth and 

volume of the formed gully. Based on this geometry, the amount of exposed waste is then 

calculated and included in the dose assessment as a soil concentration across the surface area of 

the fan and the gully.  

The remainder of this document describes gully geometry and the derivation of a simple model 

of a gully, based on recommendations from Dr. Willgoose, as well as the implementation of this 

model in the Clive DU PA Model.  
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Figure 5. Illustration of the embankment with and without gullies. 

 

5.2 Gully Geometry Overview 

The overall geometry of the simplified gully used in the Clive DU PA Model is illustrated in 

Figure 6. Both Figure 5 and Figure 6 show a representation of half of the embankment, with the 

ridge of the top slope on the vertical axis. The vertical axis in Figure 6 is the elevation above 

ground surface, and the horizontal axis is the distance from the ridge of the embankment. The 

thalweg of the gully is the blue curved line in Figure 6; it forms the bottom of the gully, sloping 

downward toward the fan.  
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Figure 6. Longitudinal cross-section of a gully in the embankment.  

Any cross section of the gully is assumed to be triangular, with the angle of repose of the gully 

being the angle that the gully makes with a horizontal plane. The height of the thalweg when it 

comes out of the embankment through the side slope is also the height of the fan. This parameter, 

h, is also denoted as zmouth, the elevation of the mouth of the gully. The break in slope is where 

the top slope and the side slope meet, denoted in Figure 6 by the point (LTS, zbreak). 

The geometry of the gully is fully described by the engineering design of the cover, as described 

above, and by stochastic parameters for the angle of repose of the gully in the cover material 

(αgully), the angle of repose of the eroded cover material (αfan), the point of initiation of the gully 

on the cover (L0), and the shape parameter of the longitudinal cross section of the gully (b). For 

these distributions, best professional judgment was used to create reasonably wide distributions 

that capture uncertainty in these parameters. 

The angle of repose of the materials in the gully was represented by choosing values based on 

gravel, with a mean of 38 degrees, from an estimated range of 30 to 45 degrees (Clover, 1998). A 

standard deviation of 5 degrees was chosen to allow a slightly wider range of angles, since there 

is uncertainty in this parameter. Thus a normal distribution was assigned with a mean of 38 

degrees, a standard deviation of 5 degrees, a minimum of near zero (10
-30

) and a maximum of 

near 90 degrees (90 minus 10
-30

). The minimum and maximum were chosen by physical 

constraints. 

The gully is assumed to begin less than 2 m from the ridge of the cover (Garry Willgoose, 

personal communication, 3 Jan 2011). As the point of initiation of the gully gets closer to the 

ridge, the slope of the gully approaches infinity, so the cover should not start at the ridge itself. 

In physical terms, the head of the gully stops migrating because there is no significant upslope 

catchment of water to cause further erosion. A uniform distribution was assigned to L0, ranging 
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from near zero (10
-30

) to 5 m. A gully is not allowed to begin at L0 equal to zero, exactly at the 

ridge of the cover; rather, it is kept to one side of the ridge. 

The angle of repose of the fan is limited on the high end by the angle created by the side slope 

and the ground surface, which is about 12 degrees. Since the fan partially lies on top of the side 

slope, the fan must form a smaller angle. There is some limitation for the smallest angle this fan 

can form. Considering the large particle size of the gravel and rip rap, it is assumed that the 

minimum angle of the fan is 5 degrees. So the distribution for αfan is chosen as a uniform 

distribution from 5 to 10 degrees. 

The distribution for b is described in Section 5.3.1. 

The notation for parameters in Figure 6 is used in the equations below. The following section 

describes geometry of the gullies as represented by the model and how the dimensions of the 

gullies are calculated. 

5.3 Gully Calculations 

The following subsections present the various mathematical formulae for calculating the 

components of the overall gully model.  

5.3.1 Equation for thalweg elevation (gully bottom) 

The following form for the slope of the thalweg of the gully as suggested by Dr. Garry Willgoose 

(personal communication, 3 Jan 2011) is:  

.
d

d
bgully

aL
L

z
Slope   (1) 

where  

zgully is the height of the gully thalweg above natural ground surface, 

L is the horizontal distance from the ridge of the cover downslope, 

a is an amplitude parameter of the steepness of the thalweg slope, and 

b is a dimensionless power parameter, representing the curve of the thalweg. 

 

Conditional on the value of b, the value of a can be calculated so that the elevation of the mouth 

of the gully matches the elevation of the fan of material that is washed out of the gully. In order 

to include the uncertainty in the model, a probability distribution was chosen to represent b. A 

mean value for b of -0.4 was estimated from the geomorphology of erosion profiles (Garry 

Willgoose, personal communication, 3 Jan 2011), and uncertainty about that value was 

implemented by representing b with a truncated normal distribution with a mean of -0.4 and a 

standard deviation of 0.15, truncated to be between -0.75 and -0.05.  

Integrating each side of this equation results in an equation for zgully, the height above ground 

surface of the thalweg along any point of the thalweg: 
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and,dLLaz b

gully   (2) 

,
1

1 CL
b

a
z b

gully 


 
 (3) 

where 

 C  is the constant of integration. 

To find a value for C, the point where the gully begins can be used. The top slope of the cover 

can be represented by the line  

.
)(

ridge

TS

ridgebreak

TS zL
L

zz
z 


  (4) 

Setting zgully equal to zTS at the start of the gully where L = L0, yields 

.
)(

1
0

1

0 ridge

TS

ridgebreakb zL
L

zz
CL

b

a







  (5) 

Solving for C, 

.
1

)(
1

00







 b

ridge

TS

ridgebreak
L

b

a
zL

L

zz
C  (6) 

In order to simplify this expression, let  

1

01
1

1 


 bL

b
B  (7) 

and 

ridgeTSridge

TS

ridgebreak
zLSzL

L

zz
B 


 000

)(
 (8) 

where 

 STS   is the slope of the top slope of the cover. 

Note that the expression B0 is the same as the height of the gully where the gully initiates. 

Now there is an expression for the elevation of the bottom of the gully (zgully) in terms of the 

distance from the ridge of the cover:  

.
1

01

1 BaBL
b

a
z b

gully 


 
 (9) 
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5.3.2 Solving for Gully Elevation 

There are two sets of equations that are fundamental to solving this system. First, it is assumed 

that if a gully forms, it comes out of the side slope, so that the mouth of the bottom of the gully 

must intersect the line that forms the top of the side slope. In other words, the equation for the 

height of the bottom of the gully, evaluated where the gully emerges, must be equal to the 

elevation of the side slope, evaluated where the mouth of the gully emerges. Written 

mathematically, this becomes 

mouthmouth
LSSLgully zz   (10) 

where  

zSS is the elevation of the side slope at any distance L from the break to the ground 

surface. 

 

The second key equation is that, the volume of cover materials removed by the gully must equal 

the volume of the material in the fan, following conservation of mass:  

.fangully VV   (11) 

where  

Vgully  is the volume of the gully in the cover and 

Vfan is the volume of the gully in the fan. 

 

In terms of the top slope and side slope, this equation can be written 

fan

SS

gully

TS

gully VVV   (12) 

where  

V
TS

gully is the volume of the gully in the top slope of the cover and 

V
SS

gully is the volume of the gully in the side slope of the cover. 

 

These equations can be used to express all other unknown variables in terms of the two variables 

a and h, which represent the elevation of the mouth of the gully. Using these key equations, the 

system of equations can be solved for a and h. 

5.3.2.1 Volume of the Gully in the Top Slope of the Cover 

As shown in Figure 6 and Figure 7, the cross-sectional area of the gully is assumed to be an 

isosceles triangle (Willgoose, personal communication, 3 Jan 2011). The height of the triangle is 

the difference between the height of the top slope and the height of the bottom of the gully. The 

angle of repose of the gully walls is the angle the gully makes with the horizontal. The base of 

the triangle is twice the height divided by the tangent of that angle. 
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Figure 7. Cross-sectional view of gully 

 

The cross-sectional area of the gully can be represented by 
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This equation simplifies to 
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(17) 

So, the volume of the gully in the top slope is the integral of the cross-sectional area from the 

initial point of the gully, L0 to the break between the top slope and the side slope, which 

corresponds to the length of the top slope, LTS. 

angle of repose of 

gully, αgully 

cross-

sectional 

height 

height / tan(αgully) 

) 
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Simplifying, the volume becomes 
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and finally, 
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5.3.2.2 Volume of the Gully in the Side Slope of the Cover 

The volume of the gully in the side slope is derived in a similar fashion to how the volume was 

derived for the gully in the top slope. The only differences are that the equation for the line made 

by the top of the side slope is used instead of the equation of the line made by edge of the top 

slope, and that the limits of integration are from the edge of the top slope (the break) to the 

mouth of the gully, at an unknown value, Lmouth. 

The side slope of the cover can be represented by the line 

2BL
L

z
z

SS

break
SS   (22) 

where 

.)(2 TSSS

SS

break LL
L

z
B   (23) 
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The volume of the gully in the side slope is the integral of the cross-sectional area of the gully in 

the side slope between the break (LTS) and the distance at which the gully mouth comes out the 

side slope (Lmouth). 
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Simplifying, the volume becomes 
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and finally, 
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5.3.2.3 Volume of the Fan 

The fan comes from the mouth of the gully, lies along the side slope, and continues to the ground 

surface (Figure 6). Figure 8 shows a 3-dimensional view of the fan. Figure 9 depicts a birds-eye 

view of the fan, looking through the fan to the bottom footprint of the fan. The base of the fan is 

the circular segment. The triangular area is the shadow of the part of the fan that lies on the 

surface of the side slope. The apex of the fan represents the point of the bottom of the gully 

mouth. 
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Figure 8. Perspective view of the fan. 

 

 

Figure 9. Plan view of the fan footprint geometry. 

 

The fan is treated as a pyramidal structure. As such, the volume of the fan corresponds to 1/3 the 

area of the base multiplied by the height: 

heightAreaV basefan 
3

1
 (29) 

For this fan, the area of the base is the area of the circular segment (Figure 9): 
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where  

R is the radius of the fan, and 

r is the horizontal distance from the gully mouth to the bottom, or ground surface, of 

the side slope. 

 

For more information on understanding this area calculation, see Weisstein (2011a) for example. 

The radius of the fan can be expressed in terms of the angle of repose of the fan, as shown in 

Figure 6 and Figure 8. 

fan

h
R

tan
  (31) 

where  

h is the height of the mouth of the gully, and 

αfan is the angle of repose of the fan. 

 

Similarly, the distance r from the gully mouth to the outer edge of the side slope is  

SS

h
r

tan
  (32) 

where  

αSS is the angle the side slope makes with the ground surface. 

 

The volume of fan can now be expressed in terms of the area in Eq. (30), with new expressions 

for R and r, and the height to the mouth of the gully, h: 
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Simplifying yields 
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5.3.2.4 Expressing a in terms of h 

The components for Eq. (11) are now given by the volume of the gully in the top slope (Eq. 

(21)), the volume of the gully in the side slope (Eq. (28)), and the volume of the fan (Eq. (33)). 

Next, Eq. (10) can be expanded to express a in terms of h, the height of the gully: 
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This can be solved for a so that 
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To express a in terms of h, an equation for Lmouth is used, based on Figure 6, so that  
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Now there are sufficient equations to solve for h, and all other variables can be re-written as a 

function of h. The equation for the elevation of the gully bottom can then be computed at any 

point along the gully. 

5.4 Implementation in the Clive DU PA Model 

The gully calculations presented above are used in the Clive DU PA Model to allow the 

formation of a gully that can be different for each realization, based on four stochastic 

parameters: the gully slope exponent b, angles of repose of the gully and fan, and the distance 

from the ridge of the cover to the initial point of the gully. The model checks to see if the gully is 

deep enough to get into the waste. If it is, then waste material is assumed to cover the surface 

area of the fan, and the surface area of the exposed waste is calculated. In order to simplify the 

calculation, waste concentrations are averaged over the waste layers exposed and then assigned 

to an exposure area that corresponds to the surface area of the fan plus the area of the waste 

exposed within the gully. 

A random number of gullies sampled from a discrete distribution is chosen to occur, simply to 

evaluate the effect a variable number of gullies would have on dose. Each of these gullies is 

identical for a given realization, in order to keep the gully model simple. The fraction of the 

cover surface area that is consumed by gullies is calculated in order to determine if the quantity 

of erosion is physically reasonable for an intact embankment. 
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5.4.1 Performing the Numerical Solution in GoldSim 

GoldSim allows the user to iteratively solve a system of equations, such as what is given above, 

using Newton’s method. This numerical solution is implemented in the Clive DU PA Model 

using a Previous Value element and a looping Container for which the user specifies a maximum 

number of loop counts and/or a convergence criterion.  

Newton’s method is a successive approximation method that can be used on differentiable 

functions. In the Model, it is the height of the gully mouth that is the function of interest. The 

formula for Newton’s method in terms of gully height is 
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hf

hf
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 (38) 

where  

f(h) is the difference between the volume of the gully and the volume of the fan and 

f’(h) is the derivative of the function f(h). 

 

New values are calculated for h until the difference between hn+1 and hn is sufficiently small. In 

the Clive DU PA Model, a convergence criterion of 0.01 m
3
 is used, such that the difference 

between the volume of the gully and the volume of the fan is less than 0.01 m
3
. 

5.4.2 Representation of Gully and Waste 

The biggest concern about gullies is whether or not a gully gets deep enough to expose and 

remove waste and how much waste is exposed and removed. In the current Clive DU PA Model, 

waste is buried only under the top slope, so the quantity of concern is the distance from the ridge 

that the gully gets into the waste. In similar terminology to that used above, this variable can be 

called Lgully., where Lgully. is a vector of distances from the ridge of the cover to where the gully 

enters the waste layer. 

Some assumptions need to be made to allow for a simple calculation of Lgully.. The column of 

waste and cover, as modeled in the Clive DU PA Model, is a 1-dimensional representation of the 

cover, but, the gully model is a 2-dimensional representation, in order to include the slope of the 

cover surface in the gully calculations. To calculate Lgully and the gully outwash of each waste 

layer, the 2-D representation must be merged with the 1-D representation. Figure 10 illustrates 

the potential configurations that were considered in the calculation of gully outwash volume and 

the calculation of where the gully first gets into the waste. The top slope has waste layers 

(outlined in green) with a cover covering the waste layers. The side slope comes off the top 

slope, with the break in slope being the vertical dotted black line. The fan leans against the side 

slope on the right side of the illustrations in Figure 10. The gully (drawn in black) intersects the 

cover and waste layers.  
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Figure 10. Gully and waste configurations for the gully outwash volume calculation. 

The cover is represented by the solid green layer and the waste layers outlined in green. A. 

the embankment as constructed; B. representation of the 1-D column, preserving the slope 

of the cover throughout the column; C. representation of the 1-D column, preserving the 

horizontal layering of the waste. 

 

Three different representations were considered in order to model the intersection of waste with 

the gully and the gully outwash volume of waste. Figure 10A roughly depicts the embankment as 

it is intended to be constructed, with the cover (solid gray-green) over horizontal waste layers 

and a sloping top cover. This representation is difficult to implement in the Clive DU PA Model 

because the waste layers do not continue across the entire top slope of the cover. Figure 10B 

represents the waste layers continuing for the length of the cover, at the same slope of the top 

slope of the cover. The problem with this approach is that the gully can dip into and out of a 

waste layer, meaning that there are two points in each waste layer that the gully could potentially 

intersect, rather than one intersection point. With this arrangement, there is considerable 

computational effort required to ensure that the numerical solution for the volume from each 

layer converges. Figure 10C shows how the implementation of the gully was chosen for the 

Clive DU PA Model. The top of the cover and top of each waste layer is set as the midpoint of 

each layer in the top slope of the cover. With the horizontal waste layers, the gully intersects 

each layer only once. 
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A problem with implementation of the arrangement in Figure 10C is that the top waste layers at 

the break in slope in this 1-D representation are higher than the actual cover height at the break 

in the 2-D representation. So the calculation is an approximation of how many waste layers are 

cut into by the gully and how much waste is washed out by the gully from each waste layer. This 

approximation is considered reasonable since the overall gully model is a simplification. 

Furthermore, if there is sufficient fill material between the top of the DU waste and the bottom of 

the cover, then the effect is negligible. Some caution should be exercised when interpreting 

output from the gully model if DU waste is disposed within a few meters of the cover. 

5.4.3 Calculation of Lgully. 

To calculate the volume of each waste layer removed by the gully and the surface area of the 

waste layers exposed by the gully, the distance from the ridge of the top slope to where the gully 

first intersects each waste layer, Lgully., must be calculated. These values are calculated by finding 

the intersection of the gully with the horizontal lines at the heights above ground surface for each 

waste layer. In other words, solve Eq. (9) for L such that zgully equals the height of each waste 

layer, zwaste : 
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where  

zwaste is a vector of the waste layer heights above ground surface at the mid-point of the top 

slope of the cover. 

Note that this calculation in the Model requires that  B1a –B0  be a vector expression of length 

equal to the number of waste layers. 

5.4.4 Calculation of Surface Area 

The surface area of the fan and the surface area of the waste exposed by the gully are summed 

and included in exposure area calculations in the dose assessment.  

5.4.4.1 Surface Area of Fan 

A simplifying assumption is used to approximate the surface area of the depositional fan: The 

surface area of the fan is a projection onto a horizontal plane. This assumption is reasonable 

since the fan has such a low angle of repose (see Section 5.2). Figure 9 shows the shape of this 

projected area. 

 

The area of a circular sector, Areasector, can be found by 

2sec
2

1
RArea tor   (40) 

where  

R is the radius of the circle and 

θ is the angle cut by the circular segment. 
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The value of R is the same as that in Eq. (31) above. The value of θ is given by 
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where  

r is the horizontal distance from the gully mouth to the outer edge of the side slope, as 

given in Eq. (32) above. 

 

Thus, the surface area of the fan SAfan can be expressed as 
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For more information on understanding this area calculation, see Weisstein, 2011b, for example. 

5.4.4.2 Surface Area of Waste Exposed by Gully 

To calculate the surface area of each waste layer exposed, the cross sectional distance of waste 

exposed by the gully is integrated over the length of the gully in the top slope (see Figure 11). 

 

Figure 11. Gully cross section for waste exposure calculations. 

 

The surface area exposed by the gully for each waste layer can be calculated by first calculating 

the surface area exposed by the gully from the top of each waste layer to the bottom of the gully 

and then subtracting that calculation from each waste layer. In other words, 

SAWasteLayer1 = SAWasteLayer1_to_GullyBottom – SAWasteLayer2_to_GullyBottom (43) 
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The surface area exposed from the top of each waste layer to the gully bottom is 
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where the 2 comes from having two sides of the gully exposed. 

 

Substituting in for zgully 
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Simplifying yields 
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This value of surface area is then evaluated for each waste layer and used as in Eq. (43) to 

calculate the surface area exposed for each waste layer. The bottom waste layer surface area is 

simply the value given in Eq. (46). 

5.4.5 Calculation of Volume of Waste Layers Removed 

In a similar fashion to the calculation for the surface area of waste exposed by the gully, the 

volume of each waste layer removed by the gully is calculated by first calculating the volume of 

waste removed from the top of each waste layer to the bottom of the gully. Then that volume 

calculation is subtracted from the layer below, similar to Eq. (43): 

VolWasteWasteLayer1 = VolWasteWasteLayer1_to_GullyBottom – VolWasteWasteLayer2_to_GullyBottom (47) 

The cross-sectional area of the waste exposed by the gully, similar to Eq. (14), is integrated over 

the length of the gully that incises the waste. 
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Simplifying, 
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(52) 

 

This calculation of volume is then evaluated for each waste layer and used as in Eq. (47) to 

calculate the volume of waste removed by the gully for each waste layer. The bottom waste layer 

volume is simply that value given in Eq. (52) evaluated for the last waste layer.  

5.4.6 Concentration of Waste Removed by Gully 

The concentration of waste removed by the gully is averaged and is assumed to be spread out 

uniformly over the surface area of the fan. This same averaged concentration of waste is assumed 

to be present in the surface area exposed by the gully.  

To obtain the average waste concentration, the concentration of each radionuclide species is 

computed as a mass-weighted average. The volume of each layer of waste removed by the gully 

is multiplied by the bulk density of that waste layer to get the mass of waste removed in each 

layer. Then the mass in each layer is divided by the total mass of waste removed. The mass of 

each radionuclide in each waste cell is converted to a mass concentration and then multiplied by 

the mass fraction of each layer removed by the gully. The concentration of waste removed by the 

gully is then the sum of each radionuclide over every waste layer. It is this total concentration 

that is used in the dose calculations. 
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